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Abstract
By carrying out extensive lattice regularized diffusion Monte Carlo
calculations, we study the spin and density dependence of the ground-state
energy for a quasi-one-dimensional electron gas, with harmonic transverse
confinement and long-range 1/r interactions. We present a parametrization
of the exchange–correlation energy suitable for spin density functional
calculations, which fulfils exact low and high density limits.

PACS numbers: 73.21.Hb, 71.45.Gm, 71.10.Pm

1. Introduction

In this paper we present a parametrization for the exchange–correlation energy of a quasi-
one-dimensional electron gas (1DEG) at arbitrary polarization. The electrons interact via a
1
r

potential and are confined to a line by a transverse harmonic potential v(r⊥) = r2
⊥

4b4 , where
b controls the thickness of the wire. Here and henceforth we use the effective Bohr radius
a�

0 = h̄2ε
m�e2 as unit of length and the effective Rydberg Ryd� = e2

2εa�
0

as unit of energy, where
ε is the dielectric constant of the embedding medium and m� is the effective electron mass.
We can separate the transverse and longitudinal parts of the Hamiltonian by assuming that the
electrons are in the ground state of the 2D harmonic oscillator in the transverse direction. This
is a good approximation provided that rs � πb

4 , where rs is the Wigner–Seitz radius. The
above condition is met for low enough densities and thin enough wires. Thus, it is possible to
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integrate out the perpendicular degrees of freedom and work with a strictly one-dimensional
Hamiltonian with electrons interacting via an effective potential given by

Vb(x) =
√

π

b
exp

(
x2

4b2

)
erfc

( |x|
2b

)
. (1)

This potential has been widely used in previous works to model the 1DEG, and we refer
the reader to [1] for a detailed description of the Hamiltonian we study and the variational
wavefunction we use. Here, we employed the lattice regularized diffusion Monte Carlo
(LRDMC) [2] algorithm to compute the ground-state energy of the system at different densities
rs and polarizations, (ζ ≡ (N↑ − N↓)/N). In one dimension, this method provides the exact
energy within the statistical accuracy, since the nodes of the ground-state wavefunction are
known exactly.

Despite the huge amount of work done for 1D systems with a 1/r interaction [1, 3–8],
a spin density exchange–correlation functional is still lacking, and the Bethe ansatz solution
is not available in this case. Fogler [9] derived an approximate mapping of the problem
with a realistic Coulomb interaction onto exactly solvable models of mathematical physics,
but the relation is valid only for ultra-thin wires and requires a careful matching between
different regimes. The quantum Monte Carlo framework can provide a parametrization valid
in all regimes, but so far a functional has been derived only for an unpolarized wire [1].
The present work fills this gap, and we provide a spin-dependent density functional for the
exchange and correlation energy suitable for DFT calculations of these systems. Indeed, the
DFT framework has been applied quite successfully in 1D [10–12, 14], mainly on short-range
1D problems where the homogeneous reference was known via Bethe ansatz.

This paper is organized as follows. In section 2 we show the results for the ground-state
energy and give a parametrization for the exchange–correlation part, while in section 3 we
present conclusions. In the appendix we derive the polarization-dependent random phase
approximation (RPA) expression for the correlation energy, which is used to set the high
density limit of our parametrization.

2. Exchange–correlation energy and construction of an LSDA functional

We study the ground-state energy of the 1DEG as a function of density and spin polarization,
and find a parametrization for the exchange–correlation energy based on theoretically known
properties of the electron gas in various limits. The best parameters for the exchange–
correlation functional will be determined via a χ2 minimization of our LRDMC values for the
total energy.

Following the usual notation, we separate the total energy ε into three parts

ε(rs, ζ ) = εt (rs, ζ ) + εx(rs, ζ ) + εc(rs, ζ ), (2)

where εt is the kinetic energy of the noninteracting system, εx is the exchange energy calculated
for the noninteracting wavefunction and εc is the correlation energy which includes corrections
to both the potential energy and also the kinetic energy due to the interactions. The first two
terms are known analytically, while the third one is fully determined by our numerical results
for the total energy ε. The kinetic energy reads

εt (rs, ζ ) = π2(1 + 3ζ 2)

48r2
s

, (3)
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while the exchange energy is

εx(rs, ζ ) = 1 + ζ

2b
F

(
4rs

(1 + ζ )πb

)
+

1 − ζ

2b
F

(
4rs

(1 − ζ )πb

)

F(x) = −
∫ 2/x

0
dy ṽ(y)

1 − xy/2

2π
,

(4)

with ṽ(x) = 2E1(x
2) exp(x2), where ṽ(bx) is the Fourier transform of the potential in (1),

and E1 is the exponential integral function.
To derive an accurate parametrization for the exchange–correlation energy, it is useful to

study both the high and low density limits in order to include them in the actual functional.
The high density limit is estimated with the random phase approximation (RPA), while the low
density physics is obtained through a mapping onto an effective one-dimensional Heisenberg
model.

The RPA is very successful in describing the energy of the homogeneous electron gas
at high density [1, 5]. Here we present the main result valid for rs � 1 with the effective
interaction in (1), while a detailed derivation is given in the appendix. It is worth stressing that
in the high density limit (small rs) the 1D model with effective pair interactions given by (1)
does not accurately describe electrons confined in a transverse harmonic potential, since the
condition rs � πb

4 is in general manifestly violated, and the single subband approximation
breaks down. The correlation energy evaluated within the RPA is

εRPA
c (rs, ζ ) =

⎧⎪⎪⎨
⎪⎪⎩

−C

(
1 +

1

1 − ζ 2

)
r2
s if rs � (1 − ζ )πb/2

−C

4
r2
s if ζ = 1,

(5)

where C = ∫ ∞
0 zṽ2(z) dz/(2π4b2) ≈ 4.9348/(2π4b2). Though from (5) the correlation

energy may at first appear discontinuous at ζ = 1, εRPA
c (rs, ζ ) is in fact a continuous function

of its variables as the two limiting behaviours in (5) clearly belong to different regions in the
ζ, rs plane.

The low density dependence of the correlation energy is difficult to determine since the
effective coupling is very strong. This causes the electrons to repel each other and form
a quasi-Wigner crystal [3]. As the exchange between the particles drops off very rapidly
with the reduction in the density, different spin configurations become almost degenerate.
However, the Lieb–Mattis theorem [14] proves that in one dimension the ground-state energy
of a system of fermions corresponds to zero total spin. This theorem precludes the existence of
a Bloch instability such as that predicted by an STLS-like theory [5, 6]. The low density spin
dependence of the correlation energy can be determined approximately by noting that the spin
sector of the 1DEG can be mapped to that of a Heisenberg spin chain [15] with coupling J . In
fact at these densities the electron gas is a quasi-Wigner crystal with local antiferromagnetic
correlations [1, 3, 16]. The Heisenberg coupling can be determined by an evaluation of the
tunnelling (exchange) rate between electrons via the WKB approximation, which gives an
exponential suppression of J at low density as stated by the relation [17]:

J (rs) = J �

(2rs)1.25
e−ν

√
2rs , (6)

where J � and ν are interaction dependent constants. The energy dependence as a function of
J of the antiferromagnetic Heisenberg spin chain is known exactly from the Bethe ansatz [18].
The difference in energies between the polarized and unpolarized spin chains turns out to be
J ln 2 [19]. These relations define the spin dependence of the total energy of the electron gas

3
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at low density. Note that in order to provide the exponentially small spin dependence given
by (6), the correlation energy must cancel the power law and logarithmic terms of both the
exchange and kinetic terms.

Our spin dependent exchange–correlation functional is built upon the parametrization of
the exchange and correlation energy for the unpolarized (ζ = 0) and polarized (ζ = 1) wires,
which reads

εxc(rs, ζ ) = aζ + bζ rs + cζ r
2
s

1 + dζ rs + eζ r2
s + fζ r3

s

+
gζ rs ln

[
rs + αζ r

βζ

s

]
1 + hζ r2

s

, (7)

where the parameters are constrained to fulfil the high density limits of both exchange and
correlation terms. Those limits imply the following conditions on the parameters:

a0 = −
√

π

2b
, (8)

a1 = −
√

π

2b
, (9)

b0 = 2 + γ + 2 ln(πb/2)

π2b2
+ a0d0, (10)

b1 = 2 + γ + 2 ln(πb)

2π2b2
+ a1d1, (11)

c0 = −2C +
2 + γ + 2 ln(πb/2)

π2b2
d0 + a0e0, (12)

c1 = −C/4 +
2 + γ + 2 ln(πb)

2π2b2
d1 + a1e1, (13)

g0 = − 2

π2b2
with β0 > 1, (14)

g1 = − 1

π2b2
with β1 > 1, (15)

where γ = 0.577 215 6649 is the Euler’s constant. On the other hand, the large rs expansion
of the expression in (7) goes as ln rs/rs . Indeed, in previous work [1, 5] it was found that both
the correlation and the exchange energies go as ln rs/rs at large rs , with their ratio approaching
a constant in that limit, a condition which is fulfilled by our parametrization.

It is useful also to define a constrained exchange–correlation functional for the unpolarized
case in a way that is accurate for low densities. Since the QMC calculations have lower
variance for the fully polarized system, we define εcon

xc (rs, 0) to be equal to the difference
between the fully polarized and unpolarized energies of the antiferromagnetic spin chain with
the coupling constant J (rs), determined using the WKB approximation. Thus we rewrite the
exchange–correlation functional for ζ = 0 as

εcon
xc (rs, 0) = εxc(rs, 0)

1 + e
r2
s −O2

rsR

+

(
1 − 1

1 + e
r2
s −O2

rsR

) (
εxc(rs, 1) − J (rs) ln 2 +

π2

16r2
s

)
, (16)

where O and R are additional fitting parameters, and J (rs) is the same as in (6) with
J � = 184.53 and ν = 2.849 68 determined via the WKB approach for our potential in
(1). In this way both the high and the low density limits are fulfilled.
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Finally, the fully spin-dependent density functional reads

εxc(rs, ζ ) = εcon
xc (rs, 0) + hz(rs, ζ ) + cz(rs, ζ ) +

1

1 + et (rs )(1−|ζ |)δ

× [
2((1 − w(rs))ζ

2 + w(rs)ζ
4)

(
εxc(rs, 1) − εcon

xc (rs, 0)
)

− 2(hz(rs, ζ ) + cz(rs, ζ ))
]
, (17)

where the additional functions are

t (rs) = t1 e−t2rs

rs

, (18)

w(rs) = e−w1rs , (19)

cz(rs, ζ ) = −Cr2
s ζ 2, (20)

hz(rs, ζ ) = rs ln(1 − (|ζ | − hcorr(rs, ζ ))2)

π2b2
, (21)

hcorr(rs, ζ ) = H1r
H2
s exp(−H3rs)ζ

4. (22)

cz(rs, ζ ) is the small ζ expansion of the correlation energy around ζ = 0, while hz(rs, ζ ) is the
variation of the exchange energy with respect to ζ = 0 at fixed rs . Both expressions are taken
in the high density limit. hz(rs, ζ ) includes another parametric function (hcorr(rs, ζ )) which
accounts for the non-analytic behaviour of the exchange energy around ζ = 1 at rs = 0. The
form of (17) was chosen to constrain the parametrization to attain energies determined by (16)
and (7). This allows the parametrization to, in principle, satisfy the non-analytic behaviour of
the correlation energy at high density and ζ = 1, while the low density behaviour is fulfilled
by the mapping onto the Heisenberg model. Even if the parametrization looks complex at the
first glance, there are only 21 independent parameters.

We have carried out extensive LRDMC simulations to find the best fitting parameters
for our parametrization. We note that there is another ‘external’ parameter b, which sets the
effective thickness of the wire and therefore defines the interparticle potential. It is of course
possible to derive the parametrization for different widths, but here we chose to work with
b = 1, which is close to the usual thickness of wires realized in semiconductor nanodevices
[20]. The calculations for b = 1 yield a series of total energies as a function of density and
spin polarization.

Great care is taken to remove all biases in the LRDMC calculations of the energy. The
lattice space error is removed by calculating the energy for different lattice spacings and
extrapolating the results with a quadratic fit in the lattice space. Finite size effects are removed
by calculating the energy for several numbers of electrons and extrapolating the result to the
thermodynamic limit by fitting the data to the form

E(N) = E +
c2

√
ln N

N2
+

c1

N2
, (23)

where E is the energy extrapolated to the thermodynamic limit, N is the number of electrons
in the calculation, and the constants c1 and c2 are fitting parameters determining the size of
the one-body and two-body finite size corrections. Additionally, the number of electrons N is
chosen in each calculation so that the number of electrons in each spin species is odd, thus
avoiding degeneracy effects. The form in (23) is obtained by following the finite size analysis
described in [21].

Our results are plotted in figures 1 and 2 which show the behaviour of the correlation
energy as a function of the density and the polarization, respectively. The correlation energy at
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Figure 1. The correlation energy of the electron gas as a function of the density rs is plotted for
b = 1 at five values of the polarization, ζ .
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Figure 2. The correlation energy of the electron gas as a function of the polarization ζ is plotted
for b = 1 at four values of the density, rs . The upper right panel shows evidence of the RPA
behaviour, quadratically as a function of ζ near ζ = 0 and then assuming an abrupt change around
ζ = 1. The upper right and lower left panels plot the intermediate case, while the lower right panel
shows the ζ dependence at low density.

high density (rs = 0.1) as a function of the polarization shows vestiges of the non-analyticity
in the correlation energy at ζ = 1 for rs → 0 (see (5)).

Tables 1 and 2 present the various parameters that are obtained by a least-square
minimization fitting of the LRDMC values for the exchange–correlation energy computed
at 17 different densities ranging from rs = 0.1 to rs = 50. From rs = 0.1 to rs = 1.5 nine
values of the polarization were used equally spaced from ζ = 0 to ζ = 1. For rs > 1.5, five
polarizations ζ = 0, 1

4 , 1
2 , 3

4 and 1 were used. These parameters produce a fit that has a reduced
χ2 of 5.3 and an overall accuracy on the order of 10−5Ryd�. The exchange–correlation energy
is plotted at several values of the density in figure 3. As one can see, it is in a good agreement
with the parametrization at all densities.
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Figure 3. Exchange–correlation energy εxc versus the polarization ζ at various densities. The
solid line comes from the parametrization while the points come from QMC calculations. Their
error bars are smaller than the point size.

Table 1. Parameter values for the fit of εcon
xc (rs , 0) and εxc(rs , 1).

a0 −0.886 2269 a1 −0.886 2269
b0 −2.141 4101 b1 −0.332 6405
c0 0.472 1355 c1 −0.177 1497
d0 2.814 23 d1 0.653 545
e0 0.529 891 e1 0.374 563
f0 0.458 513 f1 0.171 205
g0 −0.202 642 g1 −0.101 321
h0 0.470 876 h1 0.281 659
α0 0.104 435 α1 0.097 434
β0 4.116 13 β1 2.868 85
R 1.257 64
O 3.118 28

Table 2. Other parameters of the parametrization.

t1 2.315 55 H1 5.904 07
t2 1.834 81 H2 2.442 23
w1 0.838 62 H3 2.934 55
δ 0.705 84
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3. Conclusions

In this paper we have presented results for properties of a quasi-one-dimensional electron
gas, with harmonic transverse confinement and long-range 1/r interactions, which is a model
for confined semiconductor structures. By carrying out extensive lattice regularized diffusion
Monte Carlo calculations, we have determined the ground-state energy as a function of spin
and density, and we have presented a parameterized fit to the Monte Carlo data that can be
used as a local density functional for exchange and correlation in spin density functional
calculations. The form is given in (17)–(22). It fulfils the high density limits of both exchange
and correlation energies around ζ = 0 and at ζ = 1. At low density a mapping to an
Heisenberg spin chain has been used to work out the ζ dependence, while the determination
of J comes from WKB calculations. The parameters are given in tables 1 and 2 for a typical
wire width b = 1. The overall accuracy of the fit is on the order of 10−5Ryd�.
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Appendix. RPA calculation of the spin-dependent correlation energy

In this appendix we compute the correlation energy of a spin polarized 1DEG in the high density
limit, using the random phase approximation (RPA). We start from the general expression of
the RPA correlation energy [22]:

εRPA
c = L

2π

∫ +∞

−∞
dk ε(k),

ε(k) = 1

4π

|k|
N

∫ +∞

−∞
dλ ln(1 − ṽ(kb)χ0(k, ikλ)) + ṽ(kb)χ0(k, ikλ),

(A.1)

where ṽ(kb) is the Fourier transform of the potential, and χ0 = χ0
↓ + χ0

↓ is the real part of the
density–density response function for the free 1D electron gas

χ0
σ (k, ω) = 1

4πk
ln

(
ω2 − (

k2 − vσ
F k

)2

ω2 − (
k2 + vσ

F k
)2

)
, (A.2)

with vσ
F the Fermi velocity of the σ (=↑,↓) component. After some algebra, and a change of

variables (k = kF q, ω = ikF qvF u), (A.1) can be rewritten at the leading rs order as follows:

εRPA
c � − 1

8(2π)3

∫ +∞

0
dq qṽ2

(
qb

αrs

) ∫ +∞

0
du

(
Q↑

q (u) + Q↓
q (u)

)2
, (A.3)

with α = 4/π in 1D. The derivation follows the work of Gell-Mann and Brueckner [23] in
3D, and Rajagopal and Kimball [24] in 2D. The ‘propagator’ Qσ

q (u) depends now on the spin
polarization, and reads

Qσ
q (u) =

∫ +∞

−∞
dk

∫ +∞

−∞
dt fσ (k)(1 − fσ (k + q)) e−ituq exp

(
−|t |

(
1

2
q2 + kq

))
, (A.4)

where f↑(x) = θ(|x| − (1 + ζ )), f↓(x) = θ(|x| − (1 − ζ )) are the zero-temperature Fermi
distributions for the two spin components, θ being the step function

θ(x) =
{

1 if x < 0
0 if x � 0.

(A.5)

8
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In order to factor out explicitly the rs order dependence in (A.3), we apply another change
of variables, by rescaling q

(
q → αrs

b
q
)
, and we integrate over u. After these steps, the RPA

correlation energy reads

εRPA
c (rs, ζ ) � − 1

8(2π)3

(αrs

b

)2
∫ +∞

0
dz zṽ2(z)

∑
σ,σ ′

Fσ,σ ′
(αrs

b
z, ζ

)
, (A.6)

where we have defined the set of functions

Fσ,σ ′(q, ζ ) = 2π

q

∫ +∞

−∞
dk1 fσ (k1)(1 − fσ (k1 + q))

∫ +∞

−∞
dk2 fσ ′(k2)(1 − fσ ′(k2 + q))

× 1

q2 + q(k1 + k2)
, (A.7)

where the ζ dependence is included in the zero-temperature Fermi distributions fσ (k). From
the above equation it is apparent that F↓,↑ = F↑,↓.

For ζ = 1, F↑,↑(q, 1) �= 0, while F↓,↓(q, 1) = F↑,↓(q, 1) = 0 ∀q. Since F↑,↑(0, 1) =
π/2, for the fully polarized 1DEG we obtain

εRPA
c (rs, ζ = 1) = − A

8π4b2
r2
s , (A.8)

a result which is in agreement with the mean spherical approximation [5].
To evaluate ERPA

c (rs, ζ ) at intermediate polarizations, we need to compute the limits

lim
x→0

Fσ,σ ′(x, ζ ) with ζ < 1. (A.9)

It turns out that F↑,↑(0, ζ ) = π/(1 + ζ ), F↑,↓(0, ζ ) = π and F↓,↓(0, ζ ) = π/(1 − ζ ). Thus,
our final result for the spin-dependent RPA correlation energy is the following:

εRPA
c (rs, ζ ) =

⎧⎪⎪⎨
⎪⎪⎩

− A

2π4b2

(
1 +

1

1 − ζ 2

)
r2
s if rs � 2(1 − ζ )b/α

− A

8π4b2
r2
s if ζ = 1.

(A.10)

Note that when ζ = 0 we recover the RPA correlation energy for the unpolarized 1DEG
derived in [1].
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